Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Biol. Res ; 572024.
Article in English | LILACS-Express | LILACS | ID: biblio-1550058

ABSTRACT

Background Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. Results Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. Conclusions In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.

2.
Rev. invest. clín ; 75(4): 193-202, Jul.-Aug. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1515323

ABSTRACT

ABSTRACT Background: In Parkinson's disease (PD), exosomes carry α-synuclein (α-syn), a fibrillar protein aggregates with potential value as a biomarker. Objective: Evidence on blood levels of exosomal α-syn in PD patients and controls was reviewed for their consistency. Methods: Thirty-six studies on exosomal α-syn concentrations in PD were identified in a systematic literature search and meta-analysis. Results: Both raw and ratio-adjusted blood exosomal α-syn levels were consistently higher in PD patients than in controls. The standardized mean difference (SMD) was 1.54 (0.18-2.90, CI95%, p < 0.01) and 1.53 (0.23-2.83, CI95%, p < 0.01), respectively. Conclusion: Our results suggest that exosomal α-syn concentrations could be a useful biomarker for PD.

3.
Chinese Journal of Oncology ; (12): 375-381, 2023.
Article in Chinese | WPRIM | ID: wpr-984732

ABSTRACT

Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.


Subject(s)
Female , Humans , Uterine Cervical Neoplasms/pathology , HeLa Cells , Fibronectins/metabolism , Culture Media, Conditioned , Carcinoma, Squamous Cell/metabolism , Adenocarcinoma , Cadherins/metabolism , RNA, Messenger/metabolism , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Proliferation , S100 Calcium Binding Protein A7/metabolism
4.
Organ Transplantation ; (6): 592-2023.
Article in Chinese | WPRIM | ID: wpr-978503

ABSTRACT

In recent years, organ transplantation has developed rapidly in China, whereas the proportion of supply and demand of organs for donation is severely unbalanced. To resolve the shortage of donor livers, repairing extended criteria donor liver and improving the quality of donor liver are critical research directions. Mesenchymal stem cell (MSC) is a category of stem cells with self-renewal and differentiation potential, which possess the functions of immunomodulation and tissue repair. The derivatives of MSC have the advantages of low immunogenicity and high biocompatibility, which have been widely applied in the treatment of multiple diseases. In this article, research progress on the role of MSC, exosomes and extracellular vesicles in alleviating liver steatosis, repairing ischemia-reperfusion injury and promoting the regeneration of small-for-size liver allograft was reviewed, and the feasibility and safety of MSC and the derivatives in repairing donor liver were summarized, aiming provide novel ideas for repairing marginal donor liver and enhancing the quality of liver allograft.

5.
Journal of Pharmaceutical Practice ; (6): 265-272, 2023.
Article in Chinese | WPRIM | ID: wpr-973682

ABSTRACT

As a type of extracellular vesicles, exosomes are released by living cells and contain diverse bioactive molecules, including nucleic acids, proteins, lipids and metabolites. They play an important role in various physiological and pathological processes by a special intercellular communication medium. As endogenous vesicles, exosomes also have the advantages of systemic circulation stability, good biocompatibility and specific targeting of tissues and cells, as well as they are promising candidates for drug delivery system. The production mechanism of exosomes describe was summarized, the methods of extraction and separation the application and mechanism of exosomes in immune and inflammation-related diseases, cardiovascular system diseases, nervous system diseases, tumors, etc. were reviewed. The engineering modifications of exosomes in high targeting properties based on the drug delivery were overviewed. Exosomes support the diagnosis and prognostic assessment of multiple diseases, which have broad application prospects as a very potential safe and specific endogenous nano-drug carrier.

6.
China Pharmacy ; (12): 1271-1275, 2023.
Article in Chinese | WPRIM | ID: wpr-973633

ABSTRACT

Exosome is a kind of vesicle secreted by a variety of cells with lipid bilayer membrane structure, which has good biocompatibility, high targeting and high stability, and is a natural nanoscale drug carrier with great development potential in drug delivery system. In this paper, exosomes and their properties, exosome drug delivery pathways and methods, the design strategy of engineered exosome drug delivery systems for targeted disease therapy, and the application of exosome drug delivery systems in the treatment of a variety of diseases were reviewed. Exosome drug delivery pathways could be divided into two categories: exogenous and endogenous. Common exosome drug delivery methods included electroporation, co-incubation, and ultrasound. Engineered exosome drug delivery system can further improve drug loading and enhance drug targeting. The main way of engineering is to modify exosome surface through genetic engineering technology, physical modification, chemical modification, etc. Exosome drug delivery system provides a new idea for targeted therapy of arthritis, tumor, brain and other diseases.

7.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 369-378, 2023.
Article in Chinese | WPRIM | ID: wpr-973232

ABSTRACT

ObjectiveTo compare the therapeutical effect of exosomes derived from fibroblasts and mesenchymal stem cells on acute wound healing. MethodsPrimary human dermal fibroblasts (hDF) were isolated, cultured and identified. Human bone marrow mesenchymal stem cell exosomes (hMSC-EXO) and hDF exosomes (hDF-EXO) were extracted by ultracentrifuga tion. After 24 h of coincubation with hDF-EXO or hMSC-EXO, hDFs proliferation and migratory capacity were evaluated by cell counting kit-8 (CCK8) assay and scratch test. Full-thickness cutaneous wounds were created on 8-week-old female C57BL/6 mice, and topically applied with PBS (control), hDF-EXO or hMSC-EXO. Wounds were measured at day 0, 2, 4, 7, and the uptake of exosomes in wound was observed at day 1. Quantitative PCR (qPCR) analysis was performed to detect the mRNA expression levels of TNF-α, IL-6, IL-1β, IL-10 in wound at day 1. HE staining was conducted to analyze the histological structure of wounds at day 7, while immunofluorescence staining was used to examine expression of PDGFR-α、α-SMA、Ki67. ResultshDF exhibited certain fibrolast-like characteristics with respect to expression of cell surface markers and specific proteins. hDF-EXO and hMSC-EXO presented exosomal morphology, size, and markers, and both concentrations were not statistically different (P>0.05); CCK8 assay showed that both exosomes promoted hDF cell viability, compared with the negative control (P<0.01), and hDF-EXO group had greater cell viability than hMSC-EXO group (P<0.01). Scratch test indicated that hDF-EXO induced a significant increase in scratch healing rate versus the negative control (P<0.01), hMSC-EXO (P<0.05). In vivo experiments showed wound tissues took up exosomes at day 1. qPCR detected TNF-α, IL-6, IL-1β expression levels in wound at day 1 were lower in exosomes group than in the control group, and were the lowest in hMSC-EXO group (all P<0.01). Wound areas were measured smaller at day 7 in exosomes group than in the control group (all P<0.01) and hDF-EXO group had better closure than hMSC-EXO group (P<0.05). HE staining revealed that compared with control group, scar, incomplete epidermis and few collagen deposition remained in the hMSC-EXO group, whereas hDF-EXO group showed re-epithelialization, continuous neo-epidermis and regenerated dermis. Immunofluorescence staining suggested that the number of fibroblasts, myofibroblasts, proliferating cells was higher in both exosomes group than that in the control group, especially the highest in hDF-EXO group. ConclusionOur study shows both exosomes accelerate wound healing, whereas hDF-EXO is more effective in promoting fibroblasts proliferation, migration, transition to myofibroblasts, and hMSC-EXO may play a role in inhibiting inflammatory reaction during early stage of wound healing.

8.
Organ Transplantation ; (6): 371-2023.
Article in Chinese | WPRIM | ID: wpr-972927

ABSTRACT

Objective To investigate the protective effect of human umbilical cord mesenchymal stem cell-derived exosome (hucMSC-Exo) on renal ischemia-reperfusion injury (IRI), and to clarify the critical role and regulating mechanism of transient receptor potential canonical (TRPC) 6/poly adenosine-diphosphate-ribose polymerase (PARP) 1 signaling pathway during this process. Methods The hucMSC-Exo was extracted by ultracentrifugation, and identified by transmission electron microscope (TEM), nanoparticle tracing analysis and Western blot. SD rats were randomly divided into the sham operation group (group S), sham operation+TRPC6 inhibitor SKF96365 group (group SS), renal IRI group (group IRI), exosome treatment group (group EXO) and exosome +TRPC6 inhibitor SKF96365 group (group ES), with 6 rats in each group. Serum creatinine and blood urea nitrogen levels were detected. Pathological changes of renal tissues were observed by hematoxylin-eosin (HE) staining and Paller score was calculated. The expression levels of key molecules of necroptosis in rat renal tissues, including receptor-interacting protein kinase (RIPK)1, RIPK3 and mixed-lineage kinase domain-like protein (MLKL), TRPC6 and PARP1, were detected by Western blot. Results Typical saucer-like structure was observed under TEM. Nanoparticle tracing analysis showed that the average diameter of the extracted substance was 125.9 nm. Western blot revealed that the surface markers of CD9, CD63 and CD81 were positively expressed, confirmed that the extracted substance was exosome. Compared with group S, the serum creatinine and blood urea nitrogen levels were up-regulated, the pathological damage of renal tissues was worsened, Paller score was elevated, the relative expression levels of TRPC6 and PARP1 proteins were down-regulated, and the relative expression levels of RIPK1, RIPK3 and MLKL proteins were up-regulated in group IRI (all P < 0.05). Compared with group IRI, the serum creatinine and blood urea nitrogen levels were down-regulated, the pathological damage of renal tissues was mitigated, Paller score was decreased, the relative expression levels of TRPC6 and PARP1 proteins were up-regulated, and the relative expression levels of RIPK1, RIPK3 and MLKL proteins were down-regulated in group EXO (all P < 0.05). Compared with group EXO, the serum creatinine and blood urea nitrogen levels were up-regulated, the pathological damage of renal tissues was aggravated, Paller score was increased, the relative expression levels of TRPC6 and PARP1 proteins were down-regulated, and the relative expression levels of RIPK1, RIPK3 and MLKL proteins were up-regulated in group ES (all P < 0.05). Conclusions hucMSC-Exo may alleviate the necroptosis induced by renal IRI in rat models, which is related to the activation of TRPC6/PARP1 signaling pathway.

9.
Protein & Cell ; (12): 123-136, 2023.
Article in English | WPRIM | ID: wpr-971616

ABSTRACT

NDFIP1 has been previously reported as a tumor suppressor in multiple solid tumors, but the function of NDFIP1 in NSCLC and the underlying mechanism are still unknown. Besides, the WW domain containing proteins can be recognized by NDFIP1, resulted in the loading of the target proteins into exosomes. However, whether WW domain-containing transcription regulator 1 (WWTR1, also known as TAZ) can be packaged into exosomes by NDFIP1 and if so, whether the release of this oncogenic protein via exosomes has an effect on tumor development has not been investigated to any extent. Here, we first found that NDFIP1 was low expressed in NSCLC samples and cell lines, which is associated with shorter OS. Then, we confirmed the interaction between TAZ and NDFIP1, and the existence of TAZ in exosomes, which requires NDFIP1. Critically, knockout of NDFIP1 led to TAZ accumulation with no change in its mRNA level and degradation rate. And the cellular TAZ level could be altered by exosome secretion. Furthermore, NDFIP1 inhibited proliferation in vitro and in vivo, and silencing TAZ eliminated the increase of proliferation caused by NDFIP1 knockout. Moreover, TAZ was negatively correlated with NDFIP1 in subcutaneous xenograft model and clinical samples, and the serum exosomal TAZ level was lower in NSCLC patients. In summary, our data uncover a new tumor suppressor, NDFIP1 in NSCLC, and a new exosome-related regulatory mechanism of TAZ.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carrier Proteins/metabolism , Cell Line , Cell Proliferation , Exosomes/metabolism , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
10.
Journal of Southern Medical University ; (12): 60-67, 2023.
Article in Chinese | WPRIM | ID: wpr-971495

ABSTRACT

OBJECTIVE@#To investigate the mechanism by which arecoline regulates the level of miR-155-5p in macrophage-secreted exosomes to induce the transformation of human oral mucosal fibroblasts (HOMFs) into fibroblast phenotype.@*METHODS@#Exosomes were harvested from human monocytic cell line THP-1 with or without arecoline treatment. The effects of arecoline-treated THP-1 cell culture supernatant (CS), THP-1-derived exosomes (EXO), exosome-depleted THP-1 cell supernatant (NES), miR-155-5p overexpression, and miR-155-5p inhibitor on migration ability of arecoline-treated HOMF cells were examined using Transwell migration assay. The polarization of THP-1 cells was detected using flow cytometry. DCFH-DA was used to detect the level of oxidative stress in the cells with different treatments. The mRNA and protein expressions of α- SMA, type I collagen and SOCS1 in the cells were detected with qRT-PCR and Western blotting.@*RESULTS@#Flow cytometry showed that arecoline-treated THP-1 cells exhibited obvious polarization from M0 to M1. Both the supernatant and exosomes from arecoline-treated THP-1 cells significantly enhanced the migration ability of HOMF cells, increased intracellular oxidative stress, up-regulated the expressions of miR-155- 5p and the mRNA and protein levels of α-SMA and type I collagen, and lowered the mRNA and protein expressions of SOCS1. In HOMF cells treated with exosomes from arecoline- treated THP-1 cells, overexpression of miR-155-5p significantly enhanced cell migration ability and increased cellular expressions of α-SMA and type I collagen, and miR-155-5p inhibitor caused the opposite changes.@*CONCLUSION@#Arecoline can up-regulate miR-155-5p expression in THP-1 cells and inhibit the expression of SOCS1 protein in HOMF cells via the exosome pathway, thus promoting the fibrotic phenotype transformation of HOMF cells.


Subject(s)
Humans , Exosomes , Arecoline/pharmacology , Collagen Type I , Fibroblasts , Macrophages , MicroRNAs
11.
Journal of Zhejiang University. Science. B ; (12): 248-261, 2023.
Article in English | WPRIM | ID: wpr-971484

ABSTRACT

An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.


Subject(s)
Humans , Hepatic Stellate Cells/pathology , Receptors, Calcitriol , Liver Cirrhosis/pathology , Macrophages/metabolism
12.
Journal of Zhejiang University. Science. B ; (12): 1-14, 2023.
Article in English | WPRIM | ID: wpr-971465

ABSTRACT

Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.


Subject(s)
Exosomes/physiology , Muscle, Skeletal/metabolism , Cell Communication , Homeostasis
13.
Chinese Journal of Emergency Medicine ; (12): 52-58, 2023.
Article in Chinese | WPRIM | ID: wpr-989788

ABSTRACT

Objective:To investigate the effects of induced pluripotent stem cell-derived exosome (iPSC-Exo) on releasing inflammatory factors from microglia induced by lipopolysaccharide (LPS).Methods:iPSC derived from the tubular epithelial cells of sepsis encephalopathy patients were resuscitated and cultured. The iPSC-Exo was isolated by low-temperature ultracentrifugation and analyzed by transmission electron microscopy, Western blot and high sensitivity flow cytometry (HSFCM). Based on the concentration of iPSC-Exo, human microglia line HMO6 cells activated by LPS (100 ng/mL) were divided into four groups randomly: LPS+ phosphate buffer solution (PBS) group, LPS+iPSC-Exo 10 5 group, LPS+iPSC-Exo 10 6 group and LPS+iPSC-Exo 10 7 group. The control group was added equal PBS but not LPS. After culture for 24 h, the concentrations of malondialdehyde in cells were detected. Quantitative RT-PCR was used to measure the mRNA expression levels of macrophage inflammatory protein 2 (MIP2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in the cells and enzyme-linked immunosorbent assay (ELISA) was used to assess the concentration of these cytokines in the supernatant. Under the same concentration of iPSC-Exo, one-way ANOVA and SNK- q test were used for comparison between groups. Results:The extracts showed spherical membrane structure by transmission electron microscopy. HSFCM showed the mean diameter of the extracts was (74.66±15.60) nm and the concentration around 2.98×10 10/mL. Western blot analysis showed high expression of exosome markers CD63, Alix and TSG101, but not GM130. Intracellular MDA concentration and mRNA expression levels and protein concentration of MIP2, TNF-α, IL-1β and IL-6 in the LPS+PBS group were significantly higher than those in the control group (all P<0.01). With the increase of iPSC-Exo concentration, the intracellular MDA concentration decreased gradually ( P<0.01), the mRNA expression levels of inflammatory factors showed a gradual downward trend (all P<0.05). Each inflammatory cytokine in the supernatant declined in a manner that was almost consistent with mRNA. Concentrations of MDA remained constant in the control group. Conclusions:iPSC-Exo derived from the tubular epithelial cells of sepsis encephalopathy patients alleviate oxidative stress and inflammation effect of microglia induced by LPS, and the modulatory effect is dose-dependent.

14.
International Eye Science ; (12): 1667-1670, 2023.
Article in Chinese | WPRIM | ID: wpr-987888

ABSTRACT

Exosomes are nanoscale extracellular vesicles that are secreted by a variety of cells in the body. They carry particular miRNA, protein molecules, transcription factors, and other information molecules, and they play a role in the pathophysiological regulation of a number of diseases in the body. Exosomes can persist steadily in biological tissues and bodily fluids. Exosomes have quickly advanced in ophthalmology in recent years due to the extensive studies of exosomes in a variety of fields, such as diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, corneal disease, glaucoma, and other diseases. The number of people who are blind caused by diabetic retinopathy is rising as living standards rise. However, it is still unclear how diabetic retinopathy works. In recent years, many studies have found that exosomes play an important role in diabetic retinopathy. In this paper, the most recent developments in exosome studies as they relate to the pathogenesis and progression of diabetic retinopathy are reviewed.

15.
Journal of Southern Medical University ; (12): 994-1001, 2023.
Article in Chinese | WPRIM | ID: wpr-987013

ABSTRACT

OBJECTIVE@#To observe the effect of exosomes secreted by lipopolysaccharides (LPS)-stimulated macrophages on hepatic stellate cell activation and migration and explore the underlying molecular mechanism.@*METHODS@#Human monocyte THP-1 cells were induced to differentiate into macrophages using propylene glycol methyl ether acetic acid (PMA, 100 ng/mL, 24 h) followed by stimulation with LPS, and the culture supernatant of macrophages was collected for extraction of the exosomes by ultracentrifugation. The expression of miR-155-5p in the exosomes was detected using qRT-PCR. A Transwell co-culture system was used to observe the effects of the macrophage-derived exosomes on LX2 cell (a hepatic stellate cell line) proliferation, migration, oxidative stress and the expression of fibrosis biomarkers, which were also observed in LX2 cells transfected with miR-155-5p-mimics or miR-155-5p-inhibitors. Western blotting was used to detect the expressions of SOCS1 and its downstream signal pathway proteins.@*RESULTS@#Treatment with the exosomes from LPS-stimulated macrophages significantly enhanced the proliferation and migration ability of LX2 cells and increased the levels of oxidative stress and expressions of the fibrosis markers such as type Ⅰ collagen (P < 0.05). The expression of miR-155-5p in the exosomes secreted by macrophages was significantly increased after LPS treatment (P < 0.01). LX2 cells overexpressing miR-155-5p also exhibited significantly enhanced proliferation and migration with increased oxidative stress levels and expression of type Ⅰ collagen (P < 0.05), and interference of miR-155-5p expression produced the opposite effects. Western blotting showed that miR-155-5p overexpression obviously inhibited SOCS1 expression and promoted p-Smad2/3, Smad2/3 and RhoA protein expressions in LX2 cells (P < 0.05).@*CONCLUSION@#LPS stimulation of the macrophages increases miR-155-5p expression in the exosomes to promote activation and migration and increase oxidative stress and collagen production in hepatic stellate cells.


Subject(s)
Humans , Hepatic Stellate Cells , Lipopolysaccharides/pharmacology , Collagen Type I , Exosomes , Macrophages , MicroRNAs
16.
Chinese Journal of Biotechnology ; (12): 275-285, 2023.
Article in Chinese | WPRIM | ID: wpr-970374

ABSTRACT

The aim of this study was to investigate the therapeutic effects and potential mechanism of c(RGDyK) peptide modified mesenchymal stem cell exosomes loaded with ginsenoside Rg1 (G-Rg1) on ischemic stroke. Thread-tying method was used to establish SD rats transient middle cerebral occlusion model (tMCAO). The model rats were randomly divided into tMCAO group, Exo group, free G-Rg1 group, Exo-Rg1 group and cRGD-Exo-Rg1 group, and sham group was used as control. The infarct volume was measured by 2, 3, 5-triphenyltetrachloride (TTC) staining, the changes of neuron and endothelium were observed by immunofluorescence, and the expression of related proteins was detected by Western blotting. The results showed that cRGD-Exo-Rg1 up-regulated the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIF-1α) by activating PI3K/AKT pathway, thus promoting angiogenesis and neurogenesis, effectively reducing the volume of cerebral infarction and improving neural function. In addition, the delivery of cRGD-Exo-Rg1 to ischemic brain tissue up-regulated the expression of occludin and claudin-5, and reduced the injury of blood-brain barrier. Taken together, cRGD-Exo-Rg1 was effective in the treatment of ischemic stroke by promoting angiogenesis and neurogenesis, which provided experimental evidence for the potential clinical benefits of other neuroprotective therapies.


Subject(s)
Rats , Animals , Ischemic Stroke/drug therapy , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases , Vascular Endothelial Growth Factor A/metabolism , Exosomes/metabolism , Ginsenosides/therapeutic use
17.
Acta Pharmaceutica Sinica ; (12): 506-515, 2023.
Article in Chinese | WPRIM | ID: wpr-965613

ABSTRACT

Exosome is a self-secreted phospholipid bilayer nanovesicles, and has shown great potential in drug delivery field due to the important advantages of low immunogenicity and homologous targeting. Phototherapy, mainly includes photodynamic therapy (PDT) and photothermal therapy (PTT), utilize light to activate photoactive drug for tumor cell killing. The advanced therapeutic strategy shows low toxic side-effect and non-invasion precise advantages, and thus has made great progress in tumor treatment over the past few years. Therefore, using exosomes as a drug delivery system to deliver phototherapeutic agents can improve therapeutic performances with a reduced side-effect, and further enhance their application potential for clinical tumor therapy. This review focus on the rising cross-subjects field involving exosomes and phototherapy, and mainly introduce the research progress and relative case of exosomes-based delivery system for cancer phototherapy. Additionally, the advantages and challenges of exosome-based phototherapy are also discussed and proposed.

18.
Organ Transplantation ; (6): 207-2023.
Article in Chinese | WPRIM | ID: wpr-965043

ABSTRACT

Islet transplantation is a promising treatment of diabetes mellitus and its complications. Nevertheless, dysfunction post-transplantation, rejection and shortage of donors are the bottleneck issues in the field of islet transplantation. Optimizing the preservation method of pancreas plays a positive role in obtaining a sufficient quantity of effective islets and maintaining their functions. During the culture stage, anti-rejection and anti-apoptosis treatment of islets, including mesenchymal stem cell (MSC), MSC-derived exosomes, anti-apoptosis drugs and gene modification, may become major approaches for islet protection and functional maintenance in clinical islet transplantation. Use of anti-instant blood-mediated inflammatory reaction (IBMIR) drugs after islet transplantation also plays a critical role in protecting islet function. In this article, the whole process from islet preparation to islet transplantation was illustrated, and relevant strategies of islet protection and functional maintenance were reviewed, aiming to provide reference for improving the quality of donors to compensate for the shortage of absolute quantity of donors and elevating the efficiency of islet transplantation.

19.
Acta Pharmaceutica Sinica B ; (6): 2645-2662, 2023.
Article in English | WPRIM | ID: wpr-982861

ABSTRACT

Induction of cancer cell ferroptosis has been proposed as a potential treatment in several cancer types. Tumor-associated macrophages (TAMs) play a key role in promoting tumor malignant progression and therapy resistance. However, the roles and mechanisms of TAMs in regulating tumor ferroptosis is still unexplored and remains enigmatic. This study shows ferroptosis inducers has shown therapeutic outcomes in cervical cancer in vitro and in vivo. TAMs have been found to suppress cervical cancer cells ferroptosis. Mechanistically, macrophage-derived miRNA-660-5p packaged into exosomes are transported into cancer cells. In cancer cells, miRNA-660-5p attenuates ALOX15 expression to inhibit ferroptosis. Moreover, the upregulation of miRNA-660-5p in macrophages depends on autocrine IL4/IL13-activated STAT6 pathway. Importantly, in clinical cervical cancer cases, ALOX15 is negatively associated with macrophages infiltration, which also raises the possibility that macrophages reduce ALOX15 levels in cervical cancer. Moreover, both univariate and multivariate Cox analyses show ALOX15 expression is independent prognostic factor and positively associated with good prognosis in cervical cancer. Altogether, this study reveals the potential utility of targeting TAMs in ferroptosis-based treatment and ALOX15 as prognosis indicators for cervical cancer.

20.
Acta Pharmaceutica Sinica B ; (6): 1789-1827, 2023.
Article in English | WPRIM | ID: wpr-982850

ABSTRACT

Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.

SELECTION OF CITATIONS
SEARCH DETAIL